
gql 3
Release 3.0.0a5

graphql-python.org

Dec 11, 2020

CONTENTS

1 Contents 3
1.1 Introduction . 3
1.2 Usage . 4
1.3 Async vs Sync . 8
1.4 Transports . 9
1.5 Advanced . 13
1.6 gql-cli . 20
1.7 Reference . 22

2 Indices and tables 33

Python Module Index 35

Index 37

i

ii

gql 3, Release 3.0.0a5

Warning: Please note that the following documentation describes the current version which is currently only
available as a pre-release and needs to be installed with “–pre”

CONTENTS 1

gql 3, Release 3.0.0a5

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

GQL 3 is a GraphQL Client for Python 3.6+ which plays nicely with other graphql implementations compatible with
the spec.

Under the hood, it uses GraphQL-core which is a Python port of GraphQL.js, the JavaScript reference implementation
for GraphQL.

1.1.1 Installation

You can install GQL 3 and all the extra dependencies using pip:

pip install --pre gql[all]

Warning: Please note that the following documentation describes the current version which is currently only
available as a pre-release and needs to be installed with “–pre”

After installation, you can start using GQL by importing from the top-level gql package.

Less dependencies

GQL supports multiple transports to communicate with the backend. Each transport can each necessitate specific
dependencies. If you only need one transport, instead of using the “all” extra dependency as described above which
installs everything, you might want to install only the dependency needed for your transport.

If for example you only need the AIOHTTPTransport, which needs the aiohttp dependency, then you can install
GQL with:

pip install --pre gql[aiohttp]

The corresponding between extra dependencies required and the GQL transports is:

Extra dependency Transports
aiohttp AIOHTTPTransport
websockets WebsocketsTransport

PhoenixChannelWebsocketsTransport
requests RequestsHTTPTransport

3

https://github.com/graphql-python/gql
https://graphql.org/
https://github.com/graphql-python/graphql-core
https://github.com/graphql/graphql-js
https://pip.pypa.io/

gql 3, Release 3.0.0a5

Note: It is also possible to install multiple extra dependencies if needed using commas: gql[aiohttp,
websockets]

1.1.2 Reporting Issues and Contributing

Please visit the GitHub repository for gql if you’re interested in the current development or want to report issues or
send pull requests.

We welcome all kinds of contributions if the coding guidelines are respected. Please check the Contributing file to
learn how to make a good pull request.

1.2 Usage

1.2.1 Basic usage

In order to execute a GraphQL request against a GraphQL API:

• create your gql transport in order to choose the destination url and the protocol used to communicate with it

• create a gql Client with the selected transport

• parse a query using gql

• execute the query on the client to get the result

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

Select your transport with a defined url endpoint
transport = AIOHTTPTransport(url="https://countries.trevorblades.com/")

Create a GraphQL client using the defined transport
client = Client(transport=transport, fetch_schema_from_transport=True)

Provide a GraphQL query
query = gql(

"""
query getContinents {

continents {
code
name

}
}

"""
)

Execute the query on the transport
result = client.execute(query)
print(result)

4 Chapter 1. Contents

https://github.com/graphql-python/gql
https://github.com/graphql-python/gql/blob/master/CONTRIBUTING.md

gql 3, Release 3.0.0a5

Warning: Please note that this basic example won’t work if you have an asyncio event loop running. In some
python environments (as with Jupyter which uses IPython) an asyncio event loop is created for you. In that case
you should use instead the Async Usage example.

1.2.2 Schema validation

If a GraphQL schema is provided, gql will validate the queries locally before sending them to the backend. If no
schema is provided, gql will send the query to the backend without local validation.

You can either provide a schema yourself, or you can request gql to get the schema from the backend using introspec-
tion.

Using a provided schema

The schema can be provided as a String (which is usually stored in a .graphql file):

with open('path/to/schema.graphql') as f:
schema_str = f.read()

client = Client(schema=schema_str)

OR can be created using python classes:

from .someSchema import SampleSchema
SampleSchema is an instance of GraphQLSchema

client = Client(schema=SampleSchema)

See tests/starwars/schema.py for an example of such a schema.

Using introspection

In order to get the schema directly from the GraphQL Server API using the transport, you need to set the
fetch_schema_from_transport argument of Client to True, and the client will fetch the schema directly after the first
connection to the backend.

1.2.3 Subscriptions

Using the websockets transport, it is possible to execute GraphQL subscriptions:

from gql import gql, Client
from gql.transport.websockets import WebsocketsTransport

transport = WebsocketsTransport(url='wss://your_server/graphql')

client = Client(
transport=transport,
fetch_schema_from_transport=True,

)

query = gql('''

(continues on next page)

1.2. Usage 5

https://graphql.org/learn/introspection
https://graphql.org/learn/introspection
https://github.com/graphql-python/gql/blob/master/tests/starwars/schema.py

gql 3, Release 3.0.0a5

(continued from previous page)

subscription yourSubscription {
...

}
''')

for result in client.subscribe(query):
print (result)

Note: The websockets transport can also execute queries or mutations, it is not restricted to subscriptions

1.2.4 Using variables

It is possible to provide variable values with your query by providing a Dict to the variable_values argument of the
execute or the subscribe methods.

The variable values will be sent alongside the query in the transport message (there is no local substitution).

query = gql(
"""
query getContinentName ($code: ID!) {

continent (code: $code) {
name

}
}

"""
)

params = {"code": "EU"}

Get name of continent with code "EU"
result = client.execute(query, variable_values=params)
print(result)

params = {"code": "AF"}

Get name of continent with code "AF"
result = client.execute(query, variable_values=params)
print(result)

1.2.5 HTTP Headers

If you want to add additional http headers for your connection, you can specify these in your transport:

transport = AIOHTTPTransport(url='YOUR_URL', headers={'Authorization': 'token'})

6 Chapter 1. Contents

gql 3, Release 3.0.0a5

1.2.6 File uploads

GQL supports file uploads with the aiohttp transport using the GraphQL multipart request spec.

Single File

In order to upload a single file, you need to:

• set the file as a variable value in the mutation

• provide the opened file to the variable_values argument of execute

• set the upload_files argument to True

transport = AIOHTTPTransport(url='YOUR_URL')

client = Client(transport=sample_transport)

query = gql('''
mutation($file: Upload!) {
singleUpload(file: $file) {

id
}

}
''')

with open("YOUR_FILE_PATH", "rb") as f:

params = {"file": f}

result = client.execute(
query, variable_values=params, upload_files=True

)

File list

It is also possible to upload multiple files using a list.

transport = AIOHTTPTransport(url='YOUR_URL')

client = Client(transport=sample_transport)

query = gql('''
mutation($files: [Upload!]!) {
multipleUpload(files: $files) {

id
}

}
''')

f1 = open("YOUR_FILE_PATH_1", "rb")
f2 = open("YOUR_FILE_PATH_1", "rb")

params = {"files": [f1, f2]}

result = client.execute(

(continues on next page)

1.2. Usage 7

https://github.com/jaydenseric/graphql-multipart-request-spec

gql 3, Release 3.0.0a5

(continued from previous page)

query, variable_values=params, upload_files=True
)

f1.close()
f2.close()

1.3 Async vs Sync

On previous versions of GQL, the code was sync only , it means that when you ran execute on the Client, you could
do nothing else in the current Thread and had to wait for an answer or a timeout from the backend to continue. The
only http library was requests, allowing only sync usage.

From the version 3 of GQL, we support sync and async transports using asyncio.

With the async transports, there is now the possibility to execute GraphQL requests asynchronously, allowing to
execute multiple requests in parallel if needed.

If you don’t care or need async functionality, it is still possible, with async transports, to run the execute or subscribe
methods directly from the Client (as described in the Basic Usage example) and GQL will execute the request in a
synchronous manner by running an asyncio event loop itself.

This won’t work though if you already have an asyncio event loop running. In that case you should use Async Usage

1.3.1 Async Usage

If you use an async transport, you can use GQL asynchronously using asyncio.

• put your code in an asyncio coroutine (method starting with async def)

• use async with client as session: to connect to the backend and provide a session instance

• use the await keyword to execute requests: await session.execute(...)

• then run your coroutine in an asyncio event loop by running asyncio.run

Example:

import asyncio

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

async def main():

transport = AIOHTTPTransport(url="https://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

(continues on next page)

8 Chapter 1. Contents

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html

gql 3, Release 3.0.0a5

(continued from previous page)

"""
query getContinents {
continents {
code
name

}
}

"""
)

result = await session.execute(query)
print(result)

asyncio.run(main())

IPython

Warning: On some Python environments, like Jupyter or Spyder, which are using IPython, an asyncio event loop
is already created for you by the environment.

In this case, running the above code might generate the following error:

RuntimeError: asyncio.run() cannot be called from a running event loop

If that happens, depending on the environment, you should replace asyncio.run(main()) by either:

await main()

OR:

loop = asyncio.get_running_loop()
loop.create_task(main())

1.4 Transports

GQL Transports are used to define how the connection is made with the backend. We have different transports for
different underlying protocols (http, websockets, . . .)

1.4.1 Async Transports

Async transports are transports which are using an underlying async library. They allow us to run GraphQL queries
asynchronously

1.4. Transports 9

gql 3, Release 3.0.0a5

AIOHTTPTransport

This transport uses the aiohttp library and allows you to send GraphQL queries using the HTTP protocol.

Note: GraphQL subscriptions are not supported on the HTTP transport. For subscriptions you should use the web-
sockets transport.

import asyncio

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

async def main():

transport = AIOHTTPTransport(url="https://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

"""
query getContinents {
continents {
code
name

}
}

"""
)

result = await session.execute(query)
print(result)

asyncio.run(main())

WebsocketsTransport

The websockets transport implements the Apollo websockets transport protocol.

This transport allows to do multiple queries, mutations and subscriptions on the same websocket connection.

import asyncio
import logging

from gql import Client, gql
from gql.transport.websockets import WebsocketsTransport

logging.basicConfig(level=logging.INFO)

(continues on next page)

10 Chapter 1. Contents

https://docs.aiohttp.org
https://github.com/apollographql/subscriptions-transport-ws/blob/master/PROTOCOL.md

gql 3, Release 3.0.0a5

(continued from previous page)

async def main():

transport = WebsocketsTransport(url="wss://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

"""
query getContinents {
continents {
code
name

}
}

"""
)
result = await session.execute(query)
print(result)

Request subscription
subscription = gql(

"""
subscription {

somethingChanged {
id

}
}

"""
)
async for result in session.subscribe(subscription):

print(result)

asyncio.run(main())

Websockets SSL

If you need to connect to an ssl encrypted endpoint:

• use _wss_ instead of _ws_ in the url of the transport

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
headers={'Authorization': 'token'}

)

If you have a self-signed ssl certificate, you need to provide an ssl_context with the server public certificate:

1.4. Transports 11

gql 3, Release 3.0.0a5

import pathlib
import ssl

ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
localhost_pem = pathlib.Path(__file__).with_name("YOUR_SERVER_PUBLIC_CERTIFICATE.pem")
ssl_context.load_verify_locations(localhost_pem)

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
ssl=ssl_context

)

If you have also need to have a client ssl certificate, add:

ssl_context.load_cert_chain(certfile='YOUR_CLIENT_CERTIFICATE.pem', keyfile='YOUR_
→˓CLIENT_CERTIFICATE_KEY.key')

Websockets authentication

There are two ways to send authentication tokens with websockets depending on the server configuration.

1. Using HTTP Headers

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
headers={'Authorization': 'token'}

)

2. With a payload in the connection_init websocket message

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
init_payload={'Authorization': 'token'}

)

PhoenixChannelWebsocketsTransport

The PhoenixChannelWebsocketsTransport is an EXPERIMENTAL async transport which allows you to execute
queries and subscriptions against an Absinthe backend using the Phoenix framework channels.

1.4.2 Sync Transports

Sync transports are transports which are using an underlying sync library. They cannot be used asynchronously.

12 Chapter 1. Contents

http://absinthe-graphql.org
https://www.phoenixframework.org
https://hexdocs.pm/phoenix/Phoenix.Channel.html#content

gql 3, Release 3.0.0a5

RequestsHTTPTransport

The RequestsHTTPTransport is a sync transport using the requests library and allows you to send GraphQL queries
using the HTTP protocol.

from gql import Client, gql
from gql.transport.requests import RequestsHTTPTransport

transport = RequestsHTTPTransport(
url="https://countries.trevorblades.com/", verify=True, retries=3,

)

client = Client(transport=transport, fetch_schema_from_transport=True)

query = gql(
"""
query getContinents {

continents {
code
name

}
}

"""
)

result = client.execute(query)
print(result)

1.5 Advanced

1.5.1 Async advanced usage

It is possible to send multiple GraphQL queries (query, mutation or subscription) in parallel, on the same websocket
connection, using asyncio tasks.

In order to retry in case of connection failure, we can use the great backoff module.

First define all your queries using a session argument:

async def execute_query1(session):
result = await session.execute(query1)
print(result)

async def execute_query2(session):
result = await session.execute(query2)
print(result)

async def execute_subscription1(session):
async for result in session.subscribe(subscription1):

print(result)

async def execute_subscription2(session):
async for result in session.subscribe(subscription2):

print(result)

(continues on next page)

1.5. Advanced 13

https://requests.readthedocs.io
https://github.com/litl/backoff

gql 3, Release 3.0.0a5

(continued from previous page)

Then create a couroutine which will connect to your API and run all your queries as
→˓tasks.
We use a `backoff` decorator to reconnect using exponential backoff in case of
→˓connection failure.

@backoff.on_exception(backoff.expo, Exception, max_time=300)
async def graphql_connection():

transport = WebsocketsTransport(url="wss://YOUR_URL")

client = Client(transport=transport, fetch_schema_from_transport=True)

async with client as session:
task1 = asyncio.create_task(execute_query1(session))
task2 = asyncio.create_task(execute_query2(session))
task3 = asyncio.create_task(execute_subscription1(session))
task4 = asyncio.create_task(execute_subscription2(session))

await asyncio.gather(task1, task2, task3, task4)

asyncio.run(graphql_connection())

Subscriptions tasks can be stopped at any time by running

task.cancel()

1.5.2 Logging

GQL use the python logging module.

In order to debug a problem, you can enable logging to see the messages exchanged between the client and the server.
To do that, set the loglevel at INFO at the beginning of your code:

import logging
logging.basicConfig(level=logging.INFO)

For even more logs, you can set the loglevel at DEBUG:

import logging
logging.basicConfig(level=logging.DEBUG)

1.5.3 Execution on a local schema

It is also possible to execute queries against a local schema (so without a transport), even if it is not really useful except
maybe for testing.

from gql import gql, Client

from .someSchema import SampleSchema

client = Client(schema=SampleSchema)

query = gql('''

(continues on next page)

14 Chapter 1. Contents

https://docs.python.org/3/howto/logging.html

gql 3, Release 3.0.0a5

(continued from previous page)

{
hello

}
''')

result = client.execute(query)

See tests/starwars/test_query.py for an example

1.5.4 Compose queries dynamically

Instead of providing the GraphQL queries as a Python String, it is also possible to create GraphQL queries dynamically.
Using the DSL module, we can create a query using a Domain Specific Language which is created from the schema.

The following code:

ds = DSLSchema(StarWarsSchema)

query = dsl_gql(
DSLQuery(

ds.Query.hero.select(
ds.Character.id,
ds.Character.name,
ds.Character.friends.select(ds.Character.name),

)
)

)

will generate a query equivalent to:

query = gql("""
query {

hero {
id
name
friends {
name

}
}

}
""")

How to use

First generate the root using the DSLSchema:

ds = DSLSchema(client.schema)

Then use auto-generated attributes of the ds instance to get a root type (Query, Mutation or Subscription). This will
generate a DSLType instance:

ds.Query

From this root type, you use auto-generated attributes to get a field. This will generate a DSLField instance:

1.5. Advanced 15

https://github.com/graphql-python/gql/blob/master/tests/starwars/test_query.py

gql 3, Release 3.0.0a5

ds.Query.hero

hero is a GraphQL object type and needs children fields. By default, there is no children fields selected. To select the
fields that you want in your query, you use the select method.

To generate the children fields, we use the same method as above to auto-generate the fields from the ds instance (ie
ds.Character.name is the field name of the type Character):

ds.Query.hero.select(ds.Character.name)

The select method return the same instance, so it is possible to chain the calls:

ds.Query.hero.select(ds.Character.name).select(ds.Character.id)

Or do it sequencially:

hero_query = ds.Query.hero

hero_query.select(ds.Character.name)
hero_query.select(ds.Character.id)

As you can select children fields of any object type, you can construct your complete query tree:

ds.Query.hero.select(
ds.Character.id,
ds.Character.name,
ds.Character.friends.select(ds.Character.name),

)

Once your root query fields are defined, you can put them in an operation using DSLQuery , DSLMutation or
DSLSubscription:

DSLQuery(
ds.Query.hero.select(

ds.Character.id,
ds.Character.name,
ds.Character.friends.select(ds.Character.name),

)
)

Once your operations are defined, use the dsl_gql function to convert your operations into a document which will
be able to get executed in the client or a session:

query = dsl_gql(
DSLQuery(

ds.Query.hero.select(
ds.Character.id,
ds.Character.name,
ds.Character.friends.select(ds.Character.name),

)
)

)

result = client.execute(query)

16 Chapter 1. Contents

gql 3, Release 3.0.0a5

Arguments

It is possible to add arguments to any field simply by calling it with the required arguments:

ds.Query.human(id="1000").select(ds.Human.name)

It can also be done using the args method:

ds.Query.human.args(id="1000").select(ds.Human.name)

Aliases

You can set an alias of a field using the alias method:

ds.Query.human.args(id=1000).alias("luke").select(ds.Character.name)

It is also possible to set the alias directly using keyword arguments of an operation:

DSLQuery(
luke=ds.Query.human.args(id=1000).select(ds.Character.name)

)

Or using keyword arguments in the select method:

ds.Query.hero.select(
my_name=ds.Character.name

)

Mutations

For the mutations, you need to start from root fields starting from ds.Mutation then you need to create the GraphQL
operation using the class DSLMutation. Example:

query = dsl_gql(
DSLMutation(

ds.Mutation.createReview.args(
episode=6, review={"stars": 5, "commentary": "This is a great movie!"}

).select(ds.Review.stars, ds.Review.commentary)
)

)

Subscriptions

For the subscriptions, you need to start from root fields starting from ds.Subscription then you need to create
the GraphQL operation using the class DSLSubscription. Example:

query = dsl_gql(
DSLSubscription(

ds.Subscription.reviewAdded(episode=6).select(ds.Review.stars, ds.Review.
→˓commentary)

)
)

1.5. Advanced 17

gql 3, Release 3.0.0a5

Multiple fields in an operation

It is possible to create an operation with multiple fields:

DSLQuery(
ds.Query.hero.select(ds.Character.name),
hero_of_episode_5=ds.Query.hero(episode=5).select(ds.Character.name),

)

Operation name

You can set the operation name of an operation using a keyword argument to dsl_gql:

query = dsl_gql(
GetHeroName=DSLQuery(ds.Query.hero.select(ds.Character.name))

)

will generate the request:

query GetHeroName {
hero {

name
}

}

Multiple operations in a document

It is possible to create an Document with multiple operations:

query = dsl_gql(
operation_name_1=DSLQuery(...),
operation_name_2=DSLQuery(...),
operation_name_3=DSLMutation(...),

)

Executable examples

Async example

import asyncio

from gql import Client
from gql.dsl import DSLQuery, DSLSchema, dsl_gql
from gql.transport.aiohttp import AIOHTTPTransport

async def main():

transport = AIOHTTPTransport(url="https://countries.trevorblades.com/graphql")

client = Client(transport=transport, fetch_schema_from_transport=True)
(continues on next page)

18 Chapter 1. Contents

gql 3, Release 3.0.0a5

(continued from previous page)

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection.
Because we requested to fetch the schema from the transport,
GQL will fetch the schema just after the establishment of the first session
async with client as session:

Instanciate the root of the DSL Schema as ds
ds = DSLSchema(client.schema)

Create the query using dynamically generated attributes from ds
query = dsl_gql(

DSLQuery(
ds.Query.continents(filter={"code": {"eq": "EU"}}).select(

ds.Continent.code, ds.Continent.name
)

)
)

result = await session.execute(query)
print(result)

This can also be written as:

I want to query the continents
query_continents = ds.Query.continents

I want to get only the continents with code equal to "EU"
query_continents(filter={"code": {"eq": "EU"}})

I want this query to return the code and name fields
query_continents.select(ds.Continent.code)
query_continents.select(ds.Continent.name)

I generate a document from my query to be able to execute it
query = dsl_gql(DSLQuery(query_continents))

Execute the query
result = await session.execute(query)
print(result)

asyncio.run(main())

Sync example

from gql import Client
from gql.dsl import DSLQuery, DSLSchema, dsl_gql
from gql.transport.requests import RequestsHTTPTransport

transport = RequestsHTTPTransport(
url="https://countries.trevorblades.com/", verify=True, retries=3,

)

(continues on next page)

1.5. Advanced 19

gql 3, Release 3.0.0a5

(continued from previous page)

client = Client(transport=transport, fetch_schema_from_transport=True)

Using `with` on the sync client will start a connection on the transport
and provide a `session` variable to execute queries on this connection.
Because we requested to fetch the schema from the transport,
GQL will fetch the schema just after the establishment of the first session
with client as session:

We should have received the schema now that the session is established
assert client.schema is not None

Instanciate the root of the DSL Schema as ds
ds = DSLSchema(client.schema)

Create the query using dynamically generated attributes from ds
query = dsl_gql(

DSLQuery(ds.Query.continents.select(ds.Continent.code, ds.Continent.name))
)

result = session.execute(query)
print(result)

1.6 gql-cli

GQL provides a python 3.6+ script, called gql-cli which allows you to execute GraphQL queries directly from the
terminal.

This script supports http(s) or websockets protocols.

1.6.1 Usage

Send GraphQL queries from the command line using http(s) or websockets. If used interactively, write your query,
then use Ctrl-D (EOF) to execute it.

usage: gql-cli [-h] [-V [VARIABLES [VARIABLES ...]]]
[-H [HEADERS [HEADERS ...]]] [--version] [-d | -v]
[-o OPERATION_NAME]
server

Positional Arguments

server the server url starting with http://, https://, ws:// or wss://

20 Chapter 1. Contents

http://
https://

gql 3, Release 3.0.0a5

Named Arguments

-V, --variables query variables in the form key:json_value

-H, --headers http headers in the form key:value

--version show program’s version number and exit

-d, --debug print lots of debugging statements (loglevel==DEBUG)

-v, --verbose show low level messages (loglevel==INFO)

-o, --operation-name set the operation_name value

1.6.2 Examples

Simple query using https

$ echo 'query { continent(code:"AF") { name } }' | gql-cli https://countries.
→˓trevorblades.com
{"continent": {"name": "Africa"}}

Simple query using websockets

$ echo 'query { continent(code:"AF") { name } }' | gql-cli wss://countries.
→˓trevorblades.com/graphql
{"continent": {"name": "Africa"}}

Query with variable

$ echo 'query getContinent($code:ID!) { continent(code:$code) { name } }' | gql-cli
→˓https://countries.trevorblades.com --variables code:AF
{"continent": {"name": "Africa"}}

Interactive usage

Insert your query in the terminal, then press Ctrl-D to execute it.

$ gql-cli wss://countries.trevorblades.com/graphql --variables code:AF

Execute query saved in a file

Put the query in a file:

$ echo 'query {
continent(code:"AF") {
name

}
}' > query.gql

Then execute query from the file:

1.6. gql-cli 21

gql 3, Release 3.0.0a5

$ cat query.gql | gql-cli wss://countries.trevorblades.com/graphql
{"continent": {"name": "Africa"}}

1.7 Reference

1.7.1 Top-Level Functions

The primary gql package includes everything you need to execute GraphQL requests, with the exception of the
transports which are optional:

• the gql method to parse a GraphQL query

• the Client class as the entrypoint to execute requests and create sessions

class gql.Client(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None,
fetch_schema_from_transport: bool = False, execute_timeout: Optional[int] =
10)

Bases: object

The Client class is the main entrypoint to execute GraphQL requests on a GQL transport.

It can take sync or async transports as argument and can either execute and subscribe to requests itself with the
execute and subscribe methods OR can be used to get a sync or async session depending on the transport
type.

To connect to an async transport and get an async session, use async with client as session:

To connect to a sync transport and get a sync session, use with client as session:

__init__(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None, fetch_schema_from_transport:
bool = False, execute_timeout: Optional[int] = 10)

Initialize the client with the given parameters.

Parameters

• schema – an optional GraphQL Schema for local validation See Schema validation

• transport – The provided transport.

• fetch_schema_from_transport – Boolean to indicate that if we want to fetch the
schema from the transport using an introspection query

• execute_timeout – The maximum time in seconds for the execution of a request
before a TimeoutError is raised. Only used for async transports.

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Execute the provided document AST against the remote server using the transport provided during init.

This function WILL BLOCK until the result is received from the server.

Either the transport is sync and we execute the query synchronously directly OR the transport is async and
we execute the query in the asyncio loop (blocking here until answer).

This method will:

22 Chapter 1. Contents

gql 3, Release 3.0.0a5

• connect using the transport to get a session

• execute the GraphQL request on the transport session

• close the session and close the connection to the server

If you have multiple requests to send, it is better to get your own session and execute the requests
in your session.

The extra arguments passed in the method will be passed to the transport execute method.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → Generator[Dict,
None, None]

Execute a GraphQL subscription with a python generator.

We need an async transport for this functionality.

gql.gql(request_string: str)→ graphql.language.ast.DocumentNode
Given a String containing a GraphQL request, parse it into a Document.

Parameters request_string (str) – the GraphQL request as a String

Returns a Document which can be later executed or subscribed by a Client, by an async
session or by a sync session

Raises GraphQLError – if a syntax error is encountered.

1.7.2 Sub-Packages

gql.client

class gql.client.AsyncClientSession(client: gql.client.Client)
Bases: object

An instance of this class is created when using async with on a client.

It contains the async methods (execute, subscribe) to send queries on an async transport using the same session.

__init__(client: gql.client.Client)

Parameters client – the client used

async execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Coroutine to execute the provided document AST asynchronously using the async transport.

The extra arguments are passed to the transport execute method.

async fetch_schema()→ None
Fetch the GraphQL schema explicitely using introspection.

Don’t use this function and instead set the fetch_schema_from_transport attribute to True

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → AsyncGenera-
tor[Dict, None]

Coroutine to subscribe asynchronously to the provided document AST asynchronously using the async
transport.

The extra arguments are passed to the transport subscribe method.

property transport

1.7. Reference 23

gql 3, Release 3.0.0a5

class gql.client.Client(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] = None,
transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None,
fetch_schema_from_transport: bool = False, execute_timeout: Op-
tional[int] = 10)

Bases: object

The Client class is the main entrypoint to execute GraphQL requests on a GQL transport.

It can take sync or async transports as argument and can either execute and subscribe to requests itself with the
execute and subscribe methods OR can be used to get a sync or async session depending on the transport
type.

To connect to an async transport and get an async session, use async with client as session:

To connect to a sync transport and get a sync session, use with client as session:

__init__(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None, fetch_schema_from_transport:
bool = False, execute_timeout: Optional[int] = 10)

Initialize the client with the given parameters.

Parameters

• schema – an optional GraphQL Schema for local validation See Schema validation

• transport – The provided transport.

• fetch_schema_from_transport – Boolean to indicate that if we want to fetch the
schema from the transport using an introspection query

• execute_timeout – The maximum time in seconds for the execution of a request
before a TimeoutError is raised. Only used for async transports.

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Execute the provided document AST against the remote server using the transport provided during init.

This function WILL BLOCK until the result is received from the server.

Either the transport is sync and we execute the query synchronously directly OR the transport is async and
we execute the query in the asyncio loop (blocking here until answer).

This method will:

• connect using the transport to get a session

• execute the GraphQL request on the transport session

• close the session and close the connection to the server

If you have multiple requests to send, it is better to get your own session and execute the requests
in your session.

The extra arguments passed in the method will be passed to the transport execute method.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → Generator[Dict,
None, None]

Execute a GraphQL subscription with a python generator.

We need an async transport for this functionality.

24 Chapter 1. Contents

gql 3, Release 3.0.0a5

class gql.client.SyncClientSession(client: gql.client.Client)
Bases: object

An instance of this class is created when using with on the client.

It contains the sync method execute to send queries on a sync transport using the same session.

__init__(client: gql.client.Client)

Parameters client – the client used

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict

fetch_schema()→ None
Fetch the GraphQL schema explicitely using introspection.

Don’t use this function and instead set the fetch_schema_from_transport attribute to True

property transport

gql.transport

class gql.transport.transport.Transport
Bases: object

__init__()
Initialize self. See help(type(self)) for accurate signature.

close()
Close the transport

This method doesn’t have to be implemented unless the transport would benefit from it. This is currently
used by the RequestsHTTPTransport transport to close the session’s connection pool.

connect()
Establish a session with the transport.

abstract execute(document: graphql.language.ast.DocumentNode, *args, **kwargs) →
graphql.execution.execute.ExecutionResult

Execute GraphQL query.

Execute the provided document AST for either a remote or local GraphQL Schema.

Parameters document – GraphQL query as AST Node or Document object.

Returns ExecutionResult

class gql.transport.local_schema.LocalSchemaTransport(schema:
graphql.type.schema.GraphQLSchema)

Bases: gql.transport.async_transport.AsyncTransport

A transport for executing GraphQL queries against a local schema.

__init__(schema: graphql.type.schema.GraphQLSchema)
Initialize the transport with the given local schema.

Parameters schema – Local schema as GraphQLSchema object

async close()
No close needed on local transport

async connect()
No connection needed on local transport

1.7. Reference 25

gql 3, Release 3.0.0a5

async execute(document: graphql.language.ast.DocumentNode, *args, **kwargs) →
graphql.execution.execute.ExecutionResult

Execute the provided document AST for on a local GraphQL Schema.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → AsyncGenera-
tor[graphql.execution.execute.ExecutionResult, None]

Send a subscription and receive the results using an async generator

The results are sent as an ExecutionResult object

class gql.transport.requests.RequestsHTTPTransport(url: str, headers: Op-
tional[Dict[str, Any]]
= None, cookies: Op-
tional[Union[Dict[str, Any], re-
quests.cookies.RequestsCookieJar]]
= None, auth: Op-
tional[requests.auth.AuthBase]
= None, use_json: bool = True,
timeout: Optional[int] = None,
verify: bool = True, retries:
int = 0, method: str = 'POST',
**kwargs: Any)

Bases: gql.transport.transport.Transport

Sync Transport used to execute GraphQL queries on remote servers.

The transport uses the requests library to send HTTP POST requests.

__init__(url: str, headers: Optional[Dict[str, Any]] = None, cookies: Optional[Union[Dict[str, Any],
requests.cookies.RequestsCookieJar]] = None, auth: Optional[requests.auth.AuthBase] =
None, use_json: bool = True, timeout: Optional[int] = None, verify: bool = True, retries:
int = 0, method: str = 'POST', **kwargs: Any)

Initialize the transport with the given request parameters.

Parameters

• url – The GraphQL server URL.

• headers – Dictionary of HTTP Headers to send with the Request (Default: None).

• cookies – Dict or CookieJar object to send with the Request (Default: None).

• auth – Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth (Default:
None).

• use_json – Send request body as JSON instead of form-urlencoded (Default: True).

• timeout – Specifies a default timeout for requests (Default: None).

• verify – Either a boolean, in which case it controls whether we verify the server’s TLS
certificate, or a string, in which case it must be a path to a CA bundle to use. (Default:
True).

• retries – Pre-setup of the requests’ Session for performing retries

• method – HTTP method used for requests. (Default: POST).

• kwargs – Optional arguments that request takes. These can be seen at the requests
source code or the official docs

close()
Closing the transport by closing the inner session

26 Chapter 1. Contents

https://github.com/psf/requests/blob/master/requests/api.py
https://requests.readthedocs.io/en/master/

gql 3, Release 3.0.0a5

connect()
Establish a session with the transport.

execute(document: graphql.language.ast.DocumentNode, variable_values: Optional[Dict[str, Any]]
= None, operation_name: Optional[str] = None, timeout: Optional[int] = None) →
graphql.execution.execute.ExecutionResult

Execute GraphQL query.

Execute the provided document AST against the configured remote server. This uses the requests library
to perform a HTTP POST request to the remote server.

Parameters

• document – GraphQL query as AST Node object.

• variable_values – Dictionary of input parameters (Default: None).

• operation_name – Name of the operation that shall be executed. Only required in
multi-operation documents (Default: None).

• timeout – Specifies a default timeout for requests (Default: None).

Returns The result of execution. data is the result of executing the query, errors is null if no
errors occurred, and is a non-empty array if an error occurred.

class gql.transport.async_transport.AsyncTransport
Bases: object

__init__()
Initialize self. See help(type(self)) for accurate signature.

abstract async close()
Coroutine used to Close an established connection

abstract async connect()
Coroutine used to create a connection to the specified address

abstract async execute(document: graphql.language.ast.DocumentNode, variable_values:
Optional[Dict[str, str]] = None, operation_name: Optional[str] =
None)→ graphql.execution.execute.ExecutionResult

Execute the provided document AST for either a remote or local GraphQL Schema.

abstract subscribe(document: graphql.language.ast.DocumentNode, variable_values: Op-
tional[Dict[str, str]] = None, operation_name: Optional[str] = None) →
AsyncGenerator[graphql.execution.execute.ExecutionResult, None]

Send a query and receive the results using an async generator

The query can be a graphql query, mutation or subscription

The results are sent as an ExecutionResult object

gql.dsl

gql.dsl.dsl_gql(*operations: gql.dsl.DSLOperation, **operations_with_name: gql.dsl.DSLOperation)
→ graphql.language.ast.DocumentNode

Given arguments instances of DSLOperation containing GraphQL operations, generate a Document which
can be executed later in a gql client or a gql session.

Similar to the gql.gql() function but instead of parsing a python string to describe the request, we are using
operations which have been generated dynamically using instances of DSLField, generated by instances of
DSLType which themselves originated from a DSLSchema class.

Parameters

1.7. Reference 27

gql 3, Release 3.0.0a5

• *operations (DSLOperation (DSLQuery, DSLMutation,
DSLSubscription)) – the GraphQL operations

• **operations_with_name (DSLOperation (DSLQuery, DSLMutation,
DSLSubscription)) – the GraphQL operations with an operation name

Returns a Document which can be later executed or subscribed by a Client, by an async
session or by a sync session

Raises TypeError – if an argument is not an instance of DSLOperation

class gql.dsl.DSLSchema(schema: graphql.type.schema.GraphQLSchema)
Bases: object

The DSLSchema is the root of the DSL code.

Attributes of the DSLSchema class are generated automatically with the __getattr__ dunder method in order to
generate instances of DSLType

__init__(schema: graphql.type.schema.GraphQLSchema)
Initialize the DSLSchema with the given schema.

Parameters schema (GraphQLSchema) – a GraphQL Schema provided locally or fetched
using an introspection query. Usually client.schema

Raises TypeError – if the argument is not an instance of GraphQLSchema

class gql.dsl.DSLOperation(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Bases: abc.ABC

Interface for GraphQL operations.

Inherited by DSLQuery , DSLMutation and DSLSubscription

operation_type: graphql.language.ast.OperationType

__init__(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Given arguments of type DSLField containing GraphQL requests, generate an operation which can be
converted to a Document using the dsl_gql.

The fields arguments should be fields of root GraphQL types (Query, Mutation or Subscription) and cor-
respond to the operation_type of this operation.

Parameters

• *fields (DSLField) – root instances of the dynamically generated requests

• **fields_with_alias (DSLField) – root instances fields with alias as key

Raises

• TypeError – if an argument is not an instance of DSLField

• AssertionError – if an argument is not a field which correspond to the operation type

class gql.dsl.DSLQuery(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Bases: gql.dsl.DSLOperation

operation_type: graphql.language.ast.OperationType = 'query'

__init__(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Given arguments of type DSLField containing GraphQL requests, generate an operation which can be
converted to a Document using the dsl_gql.

The fields arguments should be fields of root GraphQL types (Query, Mutation or Subscription) and cor-
respond to the operation_type of this operation.

28 Chapter 1. Contents

gql 3, Release 3.0.0a5

Parameters

• *fields (DSLField) – root instances of the dynamically generated requests

• **fields_with_alias (DSLField) – root instances fields with alias as key

Raises

• TypeError – if an argument is not an instance of DSLField

• AssertionError – if an argument is not a field which correspond to the operation type

class gql.dsl.DSLMutation(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Bases: gql.dsl.DSLOperation

operation_type: graphql.language.ast.OperationType = 'mutation'

__init__(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Given arguments of type DSLField containing GraphQL requests, generate an operation which can be
converted to a Document using the dsl_gql.

The fields arguments should be fields of root GraphQL types (Query, Mutation or Subscription) and cor-
respond to the operation_type of this operation.

Parameters

• *fields (DSLField) – root instances of the dynamically generated requests

• **fields_with_alias (DSLField) – root instances fields with alias as key

Raises

• TypeError – if an argument is not an instance of DSLField

• AssertionError – if an argument is not a field which correspond to the operation type

class gql.dsl.DSLSubscription(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Bases: gql.dsl.DSLOperation

operation_type: graphql.language.ast.OperationType = 'subscription'

__init__(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)
Given arguments of type DSLField containing GraphQL requests, generate an operation which can be
converted to a Document using the dsl_gql.

The fields arguments should be fields of root GraphQL types (Query, Mutation or Subscription) and cor-
respond to the operation_type of this operation.

Parameters

• *fields (DSLField) – root instances of the dynamically generated requests

• **fields_with_alias (DSLField) – root instances fields with alias as key

Raises

• TypeError – if an argument is not an instance of DSLField

• AssertionError – if an argument is not a field which correspond to the operation type

class gql.dsl.DSLType(graphql_type: Union[graphql.type.definition.GraphQLObjectType,
graphql.type.definition.GraphQLInterfaceType])

Bases: object

The DSLType represents a GraphQL type for the DSL code.

It can be a root type (Query, Mutation or Subscription). Or it can be any other object type (Human in the
StarWars schema). Or it can be an interface type (Character in the StarWars schema).

1.7. Reference 29

gql 3, Release 3.0.0a5

Instances of this class are generated for you automatically as attributes of the DSLSchema

Attributes of the DSLType class are generated automatically with the __getattr__ dunder method in order to
generate instances of DSLField

__init__(graphql_type: Union[graphql.type.definition.GraphQLObjectType,
graphql.type.definition.GraphQLInterfaceType])

Initialize the DSLType with the GraphQL type.

Warning: Don’t instantiate this class yourself. Use attributes of the DSLSchema instead.

Parameters graphql_type – the GraphQL type definition from the schema

class gql.dsl.DSLField(name: str, graphql_type: Union[graphql.type.definition.GraphQLObjectType,
graphql.type.definition.GraphQLInterfaceType], graphql_field:
graphql.type.definition.GraphQLField)

Bases: object

The DSLField represents a GraphQL field for the DSL code.

Instances of this class are generated for you automatically as attributes of the DSLType

If this field contains children fields, then you need to select which ones you want in the request using the
select method.

__init__(name: str, graphql_type: Union[graphql.type.definition.GraphQLObjectType,
graphql.type.definition.GraphQLInterfaceType], graphql_field:
graphql.type.definition.GraphQLField)

Initialize the DSLField.

Warning: Don’t instantiate this class yourself. Use attributes of the DSLType instead.

Parameters

• name – the name of the field

• graphql_type – the GraphQL type definition from the schema

• graphql_field – the GraphQL field definition from the schema

select(*fields: gql.dsl.DSLField, **fields_with_alias: gql.dsl.DSLField)→ gql.dsl.DSLField
Select the new children fields that we want to receive in the request.

If used multiple times, we will add the new children fields to the existing children fields.

Parameters

• *fields (DSLField) – new children fields

• **fields_with_alias (DSLField) – new children fields with alias as key

Returns itself

Raises TypeError – if any of the provided fields are not instances of the DSLField class.

alias(alias: str)→ gql.dsl.DSLField
Set an alias

30 Chapter 1. Contents

gql 3, Release 3.0.0a5

Note: You can also pass the alias directly at the select method. ds.Query.human.
select(my_name=ds.Character.name) is equivalent to: ds.Query.human.select(ds.
Character.name.alias("my_name"))

Parameters alias (str) – the alias

Returns itself

args(**kwargs)→ gql.dsl.DSLField
Set the arguments of a field

The arguments are parsed to be stored in the AST of this field.

Note: You can also call the field directly with your arguments. ds.Query.human(id=1000) is
equivalent to: ds.Query.human.args(id=1000)

Parameters **kwargs – the arguments (keyword=value)

Returns itself

Raises KeyError – if any of the provided arguments does not exist for this field.

1.7. Reference 31

gql 3, Release 3.0.0a5

32 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

33

gql 3, Release 3.0.0a5

34 Chapter 2. Indices and tables

PYTHON MODULE INDEX

g
gql, 22
gql.client, 23
gql.dsl, 27

35

gql 3, Release 3.0.0a5

36 Python Module Index

INDEX

Symbols
__init__() (gql.Client method), 22
__init__() (gql.client.AsyncClientSession method),

23
__init__() (gql.client.Client method), 24
__init__() (gql.client.SyncClientSession method), 25
__init__() (gql.dsl.DSLField method), 30
__init__() (gql.dsl.DSLMutation method), 29
__init__() (gql.dsl.DSLOperation method), 28
__init__() (gql.dsl.DSLQuery method), 28
__init__() (gql.dsl.DSLSchema method), 28
__init__() (gql.dsl.DSLSubscription method), 29
__init__() (gql.dsl.DSLType method), 30
__init__() (gql.transport.async_transport.AsyncTransport

method), 27
__init__() (gql.transport.local_schema.LocalSchemaTransport

method), 25
__init__() (gql.transport.requests.RequestsHTTPTransport

method), 26
__init__() (gql.transport.transport.Transport

method), 25

A
alias() (gql.dsl.DSLField method), 30
args() (gql.dsl.DSLField method), 31
AsyncClientSession (class in gql.client), 23
AsyncTransport (class in

gql.transport.async_transport), 27

C
Client (class in gql), 22
Client (class in gql.client), 23
close() (gql.transport.async_transport.AsyncTransport

method), 27
close() (gql.transport.local_schema.LocalSchemaTransport

method), 25
close() (gql.transport.requests.RequestsHTTPTransport

method), 26
close() (gql.transport.transport.Transport method),

25
connect() (gql.transport.async_transport.AsyncTransport

method), 27

connect() (gql.transport.local_schema.LocalSchemaTransport
method), 25

connect() (gql.transport.requests.RequestsHTTPTransport
method), 26

connect() (gql.transport.transport.Transport
method), 25

D
dsl_gql() (in module gql.dsl), 27
DSLField (class in gql.dsl), 30
DSLMutation (class in gql.dsl), 29
DSLOperation (class in gql.dsl), 28
DSLQuery (class in gql.dsl), 28
DSLSchema (class in gql.dsl), 28
DSLSubscription (class in gql.dsl), 29
DSLType (class in gql.dsl), 29

E
execute() (gql.Client method), 22
execute() (gql.client.AsyncClientSession method), 23
execute() (gql.client.Client method), 24
execute() (gql.client.SyncClientSession method), 25
execute() (gql.transport.async_transport.AsyncTransport

method), 27
execute() (gql.transport.local_schema.LocalSchemaTransport

method), 25
execute() (gql.transport.requests.RequestsHTTPTransport

method), 27
execute() (gql.transport.transport.Transport

method), 25

F
fetch_schema() (gql.client.AsyncClientSession

method), 23
fetch_schema() (gql.client.SyncClientSession

method), 25

G
gql

module, 22
gql() (in module gql), 23
gql.client

37

gql 3, Release 3.0.0a5

module, 23
gql.dsl

module, 27

L
LocalSchemaTransport (class in

gql.transport.local_schema), 25

M
module

gql, 22
gql.client, 23
gql.dsl, 27

O
operation_type (gql.dsl.DSLMutation attribute), 29
operation_type (gql.dsl.DSLOperation attribute),

28
operation_type (gql.dsl.DSLQuery attribute), 28
operation_type (gql.dsl.DSLSubscription attribute),

29

R
RequestsHTTPTransport (class in

gql.transport.requests), 26

S
select() (gql.dsl.DSLField method), 30
subscribe() (gql.Client method), 23
subscribe() (gql.client.AsyncClientSession method),

23
subscribe() (gql.client.Client method), 24
subscribe() (gql.transport.async_transport.AsyncTransport

method), 27
subscribe() (gql.transport.local_schema.LocalSchemaTransport

method), 26
SyncClientSession (class in gql.client), 24

T
Transport (class in gql.transport.transport), 25
transport() (gql.client.AsyncClientSession prop-

erty), 23
transport() (gql.client.SyncClientSession property),

25

38 Index

	Contents
	Introduction
	Usage
	Async vs Sync
	Transports
	Advanced
	gql-cli
	Reference

	Indices and tables
	Python Module Index
	Index

