
gql 3
Release 3.0.0a4

graphql-python.org

Nov 01, 2020

CONTENTS

1 Contents 3
1.1 Introduction . 3
1.2 Usage . 4
1.3 Async vs Sync . 8
1.4 Transports . 9
1.5 Advanced . 13
1.6 gql-cli . 15
1.7 Reference . 17

2 Indices and tables 25

Python Module Index 27

Index 29

i

ii

gql 3, Release 3.0.0a4

Warning: Please note that the following documentation describes the current version which is currently only
available as a pre-release and needs to be installed with “–pre”

CONTENTS 1

gql 3, Release 3.0.0a4

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

GQL 3 is a GraphQL Client for Python 3.6+ which plays nicely with other graphql implementations compatible with
the spec.

Under the hood, it uses GraphQL-core which is a Python port of GraphQL.js, the JavaScript reference implementation
for GraphQL.

1.1.1 Installation

You can install GQL 3 and all the extra dependencies using pip:

pip install --pre gql[all]

Warning: Please note that the following documentation describes the current version which is currently only
available as a pre-release and needs to be installed with “–pre”

After installation, you can start using GQL by importing from the top-level gql package.

Less dependencies

GQL supports multiple transports to communicate with the backend. Each transport can each necessitate specific
dependencies. If you only need one transport, instead of using the “all” extra dependency as described above which
installs everything, you might want to install only the dependency needed for your transport.

If for example you only need the AIOHTTPTransport, which needs the aiohttp dependency, then you can install
GQL with:

pip install --pre gql[aiohttp]

The corresponding between extra dependencies required and the GQL transports is:

Extra dependency Transports
aiohttp AIOHTTPTransport
websockets WebsocketsTransport

PhoenixChannelWebsocketsTransport
requests RequestsHTTPTransport

3

https://github.com/graphql-python/gql
https://graphql.org/
https://github.com/graphql-python/graphql-core
https://github.com/graphql/graphql-js
https://pip.pypa.io/

gql 3, Release 3.0.0a4

Note: It is also possible to install multiple extra dependencies if needed using commas: gql[aiohttp,
websockets]

1.1.2 Reporting Issues and Contributing

Please visit the GitHub repository for gql if you’re interested in the current development or want to report issues or
send pull requests.

We welcome all kinds of contributions if the coding guidelines are respected. Please check the Contributing file to
learn how to make a good pull request.

1.2 Usage

1.2.1 Basic usage

In order to execute a GraphQL request against a GraphQL API:

• create your gql transport in order to choose the destination url and the protocol used to communicate with it

• create a gql Client with the selected transport

• parse a query using gql

• execute the query on the client to get the result

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

Select your transport with a defined url endpoint
transport = AIOHTTPTransport(url="https://countries.trevorblades.com/")

Create a GraphQL client using the defined transport
client = Client(transport=transport, fetch_schema_from_transport=True)

Provide a GraphQL query
query = gql(

"""
query getContinents {

continents {
code
name

}
}

"""
)

Execute the query on the transport
result = client.execute(query)
print(result)

4 Chapter 1. Contents

https://github.com/graphql-python/gql
https://github.com/graphql-python/gql/blob/master/CONTRIBUTING.md

gql 3, Release 3.0.0a4

Warning: Please note that this basic example won’t work if you have an asyncio event loop running. In some
python environments (as with Jupyter which uses IPython) an asyncio event loop is created for you. In that case
you should use instead the Async Usage example.

1.2.2 Schema validation

If a GraphQL schema is provided, gql will validate the queries locally before sending them to the backend. If no
schema is provided, gql will send the query to the backend without local validation.

You can either provide a schema yourself, or you can request gql to get the schema from the backend using introspec-
tion.

Using a provided schema

The schema can be provided as a String (which is usually stored in a .graphql file):

with open('path/to/schema.graphql') as f:
schema_str = f.read()

client = Client(schema=schema_str)

OR can be created using python classes:

from .someSchema import SampleSchema
SampleSchema is an instance of GraphQLSchema

client = Client(schema=SampleSchema)

See tests/starwars/schema.py for an example of such a schema.

Using introspection

In order to get the schema directly from the GraphQL Server API using the transport, you need to set the
fetch_schema_from_transport argument of Client to True, and the client will fetch the schema before the execution of
the first query.

1.2.3 Subscriptions

Using the websockets transport, it is possible to execute GraphQL subscriptions:

from gql import gql, Client
from gql.transport.websockets import WebsocketsTransport

transport = WebsocketsTransport(url='wss://your_server/graphql')

client = Client(
transport=transport,
fetch_schema_from_transport=True,

)

query = gql('''

(continues on next page)

1.2. Usage 5

https://graphql.org/learn/introspection
https://graphql.org/learn/introspection
https://github.com/graphql-python/gql/blob/master/tests/starwars/schema.py

gql 3, Release 3.0.0a4

(continued from previous page)

subscription yourSubscription {
...

}
''')

for result in client.subscribe(query):
print (result)

Note: The websockets transport can also execute queries or mutations, it is not restricted to subscriptions

1.2.4 Using variables

It is possible to provide variable values with your query by providing a Dict to the variable_values argument of the
execute or the subscribe methods.

The variable values will be sent alongside the query in the transport message (there is no local substitution).

query = gql(
"""
query getContinentName ($code: ID!) {

continent (code: $code) {
name

}
}

"""
)

params = {"code": "EU"}

Get name of continent with code "EU"
result = client.execute(query, variable_values=params)
print(result)

params = {"code": "AF"}

Get name of continent with code "AF"
result = client.execute(query, variable_values=params)
print(result)

1.2.5 HTTP Headers

If you want to add additional http headers for your connection, you can specify these in your transport:

transport = AIOHTTPTransport(url='YOUR_URL', headers={'Authorization': 'token'})

6 Chapter 1. Contents

gql 3, Release 3.0.0a4

1.2.6 File uploads

GQL supports file uploads with the aiohttp transport using the GraphQL multipart request spec.

Single File

In order to upload a single file, you need to:

• set the file as a variable value in the mutation

• provide the opened file to the variable_values argument of execute

• set the upload_files argument to True

transport = AIOHTTPTransport(url='YOUR_URL')

client = Client(transport=sample_transport)

query = gql('''
mutation($file: Upload!) {
singleUpload(file: $file) {

id
}

}
''')

with open("YOUR_FILE_PATH", "rb") as f:

params = {"file": f}

result = client.execute(
query, variable_values=params, upload_files=True

)

File list

It is also possible to upload multiple files using a list.

transport = AIOHTTPTransport(url='YOUR_URL')

client = Client(transport=sample_transport)

query = gql('''
mutation($files: [Upload!]!) {
multipleUpload(files: $files) {

id
}

}
''')

f1 = open("YOUR_FILE_PATH_1", "rb")
f2 = open("YOUR_FILE_PATH_1", "rb")

params = {"files": [f1, f2]}

result = client.execute(

(continues on next page)

1.2. Usage 7

https://github.com/jaydenseric/graphql-multipart-request-spec

gql 3, Release 3.0.0a4

(continued from previous page)

query, variable_values=params, upload_files=True
)

f1.close()
f2.close()

1.3 Async vs Sync

On previous versions of GQL, the code was sync only , it means that when you ran execute on the Client, you could
do nothing else in the current Thread and had to wait for an answer or a timeout from the backend to continue. The
only http library was requests, allowing only sync usage.

From the version 3 of GQL, we support sync and async transports using asyncio.

With the async transports, there is now the possibility to execute GraphQL requests asynchronously, allowing to
execute multiple requests in parallel if needed.

If you don’t care or need async functionality, it is still possible, with async transports, to run the execute or subscribe
methods directly from the Client (as described in the Basic Usage example) and GQL will execute the request in a
synchronous manner by running an asyncio event loop itself.

This won’t work though if you already have an asyncio event loop running. In that case you should use Async Usage

1.3.1 Async Usage

If you use an async transport, you can use GQL asynchronously using asyncio.

• put your code in an asyncio coroutine (method starting with async def)

• use async with client as session: to connect to the backend and provide a session instance

• use the await keyword to execute requests: await session.execute(...)

• then run your coroutine in an asyncio event loop by running asyncio.run

Example:

import asyncio

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

async def main():

transport = AIOHTTPTransport(url="https://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

(continues on next page)

8 Chapter 1. Contents

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html

gql 3, Release 3.0.0a4

(continued from previous page)

"""
query getContinents {
continents {
code
name

}
}

"""
)

result = await session.execute(query)
print(result)

asyncio.run(main())

IPython

Warning: On some Python environments, like Jupyter or Spyder, which are using IPython, an asyncio event loop
is already created for you by the environment.

In this case, running the above code might generate the following error:

RuntimeError: asyncio.run() cannot be called from a running event loop

If that happens, depending on the environment, you should replace asyncio.run(main()) by either:

await main()

OR:

loop = asyncio.get_running_loop()
loop.create_task(main())

1.4 Transports

GQL Transports are used to define how the connection is made with the backend. We have different transports for
different underlying protocols (http, websockets, . . .)

1.4.1 Async Transports

Async transports are transports which are using an underlying async library. They allow us to run GraphQL queries
asynchronously

1.4. Transports 9

gql 3, Release 3.0.0a4

AIOHTTPTransport

This transport uses the aiohttp library and allows you to send GraphQL queries using the HTTP protocol.

Note: GraphQL subscriptions are not supported on the HTTP transport. For subscriptions you should use the web-
sockets transport.

import asyncio

from gql import Client, gql
from gql.transport.aiohttp import AIOHTTPTransport

async def main():

transport = AIOHTTPTransport(url="https://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

"""
query getContinents {
continents {
code
name

}
}

"""
)

result = await session.execute(query)
print(result)

asyncio.run(main())

WebsocketsTransport

The websockets transport implements the Apollo websockets transport protocol.

This transport allows to do multiple queries, mutations and subscriptions on the same websocket connection.

import asyncio
import logging

from gql import Client, gql
from gql.transport.websockets import WebsocketsTransport

logging.basicConfig(level=logging.INFO)

(continues on next page)

10 Chapter 1. Contents

https://docs.aiohttp.org
https://github.com/apollographql/subscriptions-transport-ws/blob/master/PROTOCOL.md

gql 3, Release 3.0.0a4

(continued from previous page)

async def main():

transport = WebsocketsTransport(url="wss://countries.trevorblades.com/graphql")

Using `async with` on the client will start a connection on the transport
and provide a `session` variable to execute queries on this connection
async with Client(

transport=transport, fetch_schema_from_transport=True,
) as session:

Execute single query
query = gql(

"""
query getContinents {
continents {
code
name

}
}

"""
)
result = await session.execute(query)
print(result)

Request subscription
subscription = gql(

"""
subscription {

somethingChanged {
id

}
}

"""
)
async for result in session.subscribe(subscription):

print(result)

asyncio.run(main())

Websockets SSL

If you need to connect to an ssl encrypted endpoint:

• use _wss_ instead of _ws_ in the url of the transport

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
headers={'Authorization': 'token'}

)

If you have a self-signed ssl certificate, you need to provide an ssl_context with the server public certificate:

1.4. Transports 11

gql 3, Release 3.0.0a4

import pathlib
import ssl

ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
localhost_pem = pathlib.Path(__file__).with_name("YOUR_SERVER_PUBLIC_CERTIFICATE.pem")
ssl_context.load_verify_locations(localhost_pem)

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
ssl=ssl_context

)

If you have also need to have a client ssl certificate, add:

ssl_context.load_cert_chain(certfile='YOUR_CLIENT_CERTIFICATE.pem', keyfile='YOUR_
→˓CLIENT_CERTIFICATE_KEY.key')

Websockets authentication

There are two ways to send authentication tokens with websockets depending on the server configuration.

1. Using HTTP Headers

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
headers={'Authorization': 'token'}

)

2. With a payload in the connection_init websocket message

sample_transport = WebsocketsTransport(
url='wss://SERVER_URL:SERVER_PORT/graphql',
init_payload={'Authorization': 'token'}

)

PhoenixChannelWebsocketsTransport

The PhoenixChannelWebsocketsTransport is an EXPERIMENTAL async transport which allows you to execute
queries and subscriptions against an Absinthe backend using the Phoenix framework channels.

1.4.2 Sync Transports

Sync transports are transports which are using an underlying sync library. They cannot be used asynchronously.

12 Chapter 1. Contents

http://absinthe-graphql.org
https://www.phoenixframework.org
https://hexdocs.pm/phoenix/Phoenix.Channel.html#content

gql 3, Release 3.0.0a4

RequestsHTTPTransport

The RequestsHTTPTransport is a sync transport using the requests library and allows you to send GraphQL queries
using the HTTP protocol.

from gql import Client, gql
from gql.transport.requests import RequestsHTTPTransport

sample_transport = RequestsHTTPTransport(
url="https://countries.trevorblades.com/", verify=True, retries=3,

)

client = Client(transport=sample_transport, fetch_schema_from_transport=True,)

query = gql(
"""
query getContinents {

continents {
code
name

}
}

"""
)

result = client.execute(query)
print(result)

1.5 Advanced

1.5.1 Async advanced usage

It is possible to send multiple GraphQL queries (query, mutation or subscription) in parallel, on the same websocket
connection, using asyncio tasks.

In order to retry in case of connection failure, we can use the great backoff module.

First define all your queries using a session argument:

async def execute_query1(session):
result = await session.execute(query1)
print(result)

async def execute_query2(session):
result = await session.execute(query2)
print(result)

async def execute_subscription1(session):
async for result in session.subscribe(subscription1):

print(result)

async def execute_subscription2(session):
async for result in session.subscribe(subscription2):

print(result)

(continues on next page)

1.5. Advanced 13

https://requests.readthedocs.io
https://github.com/litl/backoff

gql 3, Release 3.0.0a4

(continued from previous page)

Then create a couroutine which will connect to your API and run all your queries as
→˓tasks.
We use a `backoff` decorator to reconnect using exponential backoff in case of
→˓connection failure.

@backoff.on_exception(backoff.expo, Exception, max_time=300)
async def graphql_connection():

transport = WebsocketsTransport(url="wss://YOUR_URL")

client = Client(transport=transport, fetch_schema_from_transport=True)

async with client as session:
task1 = asyncio.create_task(execute_query1(session))
task2 = asyncio.create_task(execute_query2(session))
task3 = asyncio.create_task(execute_subscription1(session))
task4 = asyncio.create_task(execute_subscription2(session))

await asyncio.gather(task1, task2, task3, task4)

asyncio.run(graphql_connection())

Subscriptions tasks can be stopped at any time by running

task.cancel()

1.5.2 Logging

GQL use the python logging module.

In order to debug a problem, you can enable logging to see the messages exchanged between the client and the server.
To do that, set the loglevel at INFO at the beginning of your code:

import logging
logging.basicConfig(level=logging.INFO)

For even more logs, you can set the loglevel at DEBUG:

import logging
logging.basicConfig(level=logging.DEBUG)

1.5.3 Execution on a local schema

It is also possible to execute queries against a local schema (so without a transport), even if it is not really useful except
maybe for testing.

from gql import gql, Client

from .someSchema import SampleSchema

client = Client(schema=SampleSchema)

query = gql('''

(continues on next page)

14 Chapter 1. Contents

https://docs.python.org/3/howto/logging.html

gql 3, Release 3.0.0a4

(continued from previous page)

{
hello

}
''')

result = client.execute(query)

See tests/starwars/test_query.py for an example

1.5.4 Compose queries dynamically

Instead of providing the GraphQL queries as a Python String, it is also possible to create GraphQL queries dynamically.
Using the DSL module, we can create a query using a Domain Specific Language which is created from the schema.

from gql.dsl import DSLSchema

client = Client(schema=StarWarsSchema)
ds = DSLSchema(client)

query_dsl = ds.Query.hero.select(
ds.Character.id,
ds.Character.name,
ds.Character.friends.select(ds.Character.name,),

)

will create a query equivalent to:

hero {
id
name
friends {
name

}
}

Warning: Please note that the DSL module is still considered experimental in GQL 3 and is subject to changes

1.6 gql-cli

GQL provides a python 3.6+ script, called gql-cli which allows you to execute GraphQL queries directly from the
terminal.

This script supports http(s) or websockets protocols.

1.6. gql-cli 15

https://github.com/graphql-python/gql/blob/master/tests/starwars/test_query.py

gql 3, Release 3.0.0a4

1.6.1 Usage

Send GraphQL queries from the command line using http(s) or websockets. If used interactively, write your query,
then use Ctrl-D (EOF) to execute it.

usage: gql-cli [-h] [-V [VARIABLES [VARIABLES ...]]]
[-H [HEADERS [HEADERS ...]]] [--version] [-d | -v]
[-o OPERATION_NAME]
server

Positional Arguments

server the server url starting with http://, https://, ws:// or wss://

Named Arguments

-V, --variables query variables in the form key:json_value

-H, --headers http headers in the form key:value

--version show program’s version number and exit

-d, --debug print lots of debugging statements (loglevel==DEBUG)

-v, --verbose show low level messages (loglevel==INFO)

-o, --operation-name set the operation_name value

1.6.2 Examples

Simple query using https

$ echo 'query { continent(code:"AF") { name } }' | gql-cli https://countries.
→˓trevorblades.com
{"continent": {"name": "Africa"}}

Simple query using websockets

$ echo 'query { continent(code:"AF") { name } }' | gql-cli wss://countries.
→˓trevorblades.com/graphql
{"continent": {"name": "Africa"}}

Query with variable

$ echo 'query getContinent($code:ID!) { continent(code:$code) { name } }' | gql-cli
→˓https://countries.trevorblades.com --variables code:AF
{"continent": {"name": "Africa"}}

16 Chapter 1. Contents

http://
https://

gql 3, Release 3.0.0a4

Interactive usage

Insert your query in the terminal, then press Ctrl-D to execute it.

$ gql-cli wss://countries.trevorblades.com/graphql --variables code:AF

Execute query saved in a file

Put the query in a file:

$ echo 'query {
continent(code:"AF") {
name

}
}' > query.gql

Then execute query from the file:

$ cat query.gql | gql-cli wss://countries.trevorblades.com/graphql
{"continent": {"name": "Africa"}}

1.7 Reference

1.7.1 Top-Level Functions

The primary gql package includes everything you need to execute GraphQL requests, with the exception of the
transports which are optional:

• the gql method to parse a GraphQL query

• the Client class as the entrypoint to execute requests and create sessions

class gql.Client(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None,
fetch_schema_from_transport: bool = False, execute_timeout: Optional[int] =
10)

Bases: object

The Client class is the main entrypoint to execute GraphQL requests on a GQL transport.

It can take sync or async transports as argument and can either execute and subscribe to requests itself with the
execute and subscribe methods OR can be used to get a sync or async session depending on the transport
type.

To connect to an async transport and get an async session, use async with client as session:

To connect to a sync transport and get a sync session, use with client as session:

__init__(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None, fetch_schema_from_transport:
bool = False, execute_timeout: Optional[int] = 10)

Initialize the client with the given parameters.

1.7. Reference 17

gql 3, Release 3.0.0a4

Parameters

• schema – an optional GraphQL Schema for local validation See Schema validation

• transport – The provided transport.

• fetch_schema_from_transport – Boolean to indicate that if we want to fetch the
schema from the transport using an introspection query

• execute_timeout – The maximum time in seconds for the execution of a request
before a TimeoutError is raised

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Execute the provided document AST against the remote server using the transport provided during init.

This function WILL BLOCK until the result is received from the server.

Either the transport is sync and we execute the query synchronously directly OR the transport is async and
we execute the query in the asyncio loop (blocking here until answer).

This method will:

• connect using the transport to get a session

• execute the GraphQL request on the transport session

• close the session and close the connection to the server

If you have multiple requests to send, it is better to get your own session and execute the requests
in your session.

The extra arguments passed in the method will be passed to the transport execute method.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → Generator[Dict,
None, None]

Execute a GraphQL subscription with a python generator.

We need an async transport for this functionality.

gql.gql(request_string: str)→ graphql.language.ast.DocumentNode
Given a String containing a GraphQL request, parse it into a Document.

Parameters request_string (str) – the GraphQL request as a String

Returns a Document which can be later executed or subscribed by a Client, by an async
session or by a sync session

Raises GraphQLError – if a syntax error is encountered.

1.7.2 Sub-Packages

Client

class gql.client.AsyncClientSession(client: gql.client.Client)
Bases: object

An instance of this class is created when using async with on a client.

It contains the async methods (execute, subscribe) to send queries on an async transport using the same session.

__init__(client: gql.client.Client)

Parameters client – the client used

18 Chapter 1. Contents

gql 3, Release 3.0.0a4

async execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Coroutine to execute the provided document AST asynchronously using the async transport.

The extra arguments are passed to the transport execute method.

async fetch_and_validate(document: graphql.language.ast.DocumentNode)
Fetch schema from transport if needed and validate document.

If no schema is present, the validation will be skipped.

async fetch_schema()→ None
Fetch the GraphQL schema explicitely using introspection.

Don’t use this function and instead set the fetch_schema_from_transport attribute to True

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → AsyncGenera-
tor[Dict, None]

Coroutine to subscribe asynchronously to the provided document AST asynchronously using the async
transport.

The extra arguments are passed to the transport subscribe method.

property transport

class gql.client.Client(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] = None,
transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None,
fetch_schema_from_transport: bool = False, execute_timeout: Op-
tional[int] = 10)

Bases: object

The Client class is the main entrypoint to execute GraphQL requests on a GQL transport.

It can take sync or async transports as argument and can either execute and subscribe to requests itself with the
execute and subscribe methods OR can be used to get a sync or async session depending on the transport
type.

To connect to an async transport and get an async session, use async with client as session:

To connect to a sync transport and get a sync session, use with client as session:

__init__(schema: Optional[Union[str, graphql.type.schema.GraphQLSchema]]
= None, introspection=None, type_def: Optional[str] =
None, transport: Optional[Union[gql.transport.transport.Transport,
gql.transport.async_transport.AsyncTransport]] = None, fetch_schema_from_transport:
bool = False, execute_timeout: Optional[int] = 10)

Initialize the client with the given parameters.

Parameters

• schema – an optional GraphQL Schema for local validation See Schema validation

• transport – The provided transport.

• fetch_schema_from_transport – Boolean to indicate that if we want to fetch the
schema from the transport using an introspection query

• execute_timeout – The maximum time in seconds for the execution of a request
before a TimeoutError is raised

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict
Execute the provided document AST against the remote server using the transport provided during init.

This function WILL BLOCK until the result is received from the server.

1.7. Reference 19

gql 3, Release 3.0.0a4

Either the transport is sync and we execute the query synchronously directly OR the transport is async and
we execute the query in the asyncio loop (blocking here until answer).

This method will:

• connect using the transport to get a session

• execute the GraphQL request on the transport session

• close the session and close the connection to the server

If you have multiple requests to send, it is better to get your own session and execute the requests
in your session.

The extra arguments passed in the method will be passed to the transport execute method.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → Generator[Dict,
None, None]

Execute a GraphQL subscription with a python generator.

We need an async transport for this functionality.

class gql.client.SyncClientSession(client: gql.client.Client)
Bases: object

An instance of this class is created when using with on the client.

It contains the sync method execute to send queries on a sync transport using the same session.

__init__(client: gql.client.Client)

Parameters client – the client used

execute(document: graphql.language.ast.DocumentNode, *args, **kwargs)→ Dict

fetch_schema()→ None
Fetch the GraphQL schema explicitely using introspection.

Don’t use this function and instead set the fetch_schema_from_transport attribute to True

property transport

Transport

class gql.transport.transport.Transport
Bases: object

__init__()
Initialize self. See help(type(self)) for accurate signature.

close()
Close the transport

This method doesn’t have to be implemented unless the transport would benefit from it. This is currently
used by the RequestsHTTPTransport transport to close the session’s connection pool.

connect()
Establish a session with the transport.

abstract execute(document: graphql.language.ast.DocumentNode, *args, **kwargs) →
graphql.execution.execute.ExecutionResult

Execute GraphQL query.

Execute the provided document AST for either a remote or local GraphQL Schema.

Parameters document – GraphQL query as AST Node or Document object.

20 Chapter 1. Contents

gql 3, Release 3.0.0a4

Returns ExecutionResult

class gql.transport.local_schema.LocalSchemaTransport(schema:
graphql.type.schema.GraphQLSchema)

Bases: gql.transport.async_transport.AsyncTransport

A transport for executing GraphQL queries against a local schema.

__init__(schema: graphql.type.schema.GraphQLSchema)
Initialize the transport with the given local schema.

Parameters schema – Local schema as GraphQLSchema object

async close()
No close needed on local transport

async connect()
No connection needed on local transport

async execute(document: graphql.language.ast.DocumentNode, *args, **kwargs) →
graphql.execution.execute.ExecutionResult

Execute the provided document AST for on a local GraphQL Schema.

subscribe(document: graphql.language.ast.DocumentNode, *args, **kwargs) → AsyncGenera-
tor[graphql.execution.execute.ExecutionResult, None]

Send a subscription and receive the results using an async generator

The results are sent as an ExecutionResult object

class gql.transport.requests.RequestsHTTPTransport(url: str, headers: Op-
tional[Dict[str, Any]]
= None, cookies: Op-
tional[Union[Dict[str, Any], re-
quests.cookies.RequestsCookieJar]]
= None, auth: Op-
tional[requests.auth.AuthBase]
= None, use_json: bool = True,
timeout: Optional[int] = None,
verify: bool = True, retries:
int = 0, method: str = 'POST',
**kwargs: Any)

Bases: gql.transport.transport.Transport

Sync Transport used to execute GraphQL queries on remote servers.

The transport uses the requests library to send HTTP POST requests.

__init__(url: str, headers: Optional[Dict[str, Any]] = None, cookies: Optional[Union[Dict[str, Any],
requests.cookies.RequestsCookieJar]] = None, auth: Optional[requests.auth.AuthBase] =
None, use_json: bool = True, timeout: Optional[int] = None, verify: bool = True, retries:
int = 0, method: str = 'POST', **kwargs: Any)

Initialize the transport with the given request parameters.

Parameters

• url – The GraphQL server URL.

• headers – Dictionary of HTTP Headers to send with the Request (Default: None).

• cookies – Dict or CookieJar object to send with the Request (Default: None).

• auth – Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth (Default:
None).

1.7. Reference 21

gql 3, Release 3.0.0a4

• use_json – Send request body as JSON instead of form-urlencoded (Default: True).

• timeout – Specifies a default timeout for requests (Default: None).

• verify – Either a boolean, in which case it controls whether we verify the server’s TLS
certificate, or a string, in which case it must be a path to a CA bundle to use. (Default:
True).

• retries – Pre-setup of the requests’ Session for performing retries

• method – HTTP method used for requests. (Default: POST).

• kwargs – Optional arguments that request takes. These can be seen at the requests
source code or the official docs

close()
Closing the transport by closing the inner session

connect()
Establish a session with the transport.

execute(document: graphql.language.ast.DocumentNode, variable_values: Optional[Dict[str, Any]]
= None, operation_name: Optional[str] = None, timeout: Optional[int] = None) →
graphql.execution.execute.ExecutionResult

Execute GraphQL query.

Execute the provided document AST against the configured remote server. This uses the requests library
to perform a HTTP POST request to the remote server.

Parameters

• document – GraphQL query as AST Node object.

• variable_values – Dictionary of input parameters (Default: None).

• operation_name – Name of the operation that shall be executed. Only required in
multi-operation documents (Default: None).

• timeout – Specifies a default timeout for requests (Default: None).

Returns The result of execution. data is the result of executing the query, errors is null if no
errors occurred, and is a non-empty array if an error occurred.

class gql.transport.async_transport.AsyncTransport
Bases: object

__init__()
Initialize self. See help(type(self)) for accurate signature.

abstract async close()
Coroutine used to Close an established connection

abstract async connect()
Coroutine used to create a connection to the specified address

abstract async execute(document: graphql.language.ast.DocumentNode, variable_values:
Optional[Dict[str, str]] = None, operation_name: Optional[str] =
None)→ graphql.execution.execute.ExecutionResult

Execute the provided document AST for either a remote or local GraphQL Schema.

abstract subscribe(document: graphql.language.ast.DocumentNode, variable_values: Op-
tional[Dict[str, str]] = None, operation_name: Optional[str] = None) →
AsyncGenerator[graphql.execution.execute.ExecutionResult, None]

Send a query and receive the results using an async generator

22 Chapter 1. Contents

https://github.com/psf/requests/blob/master/requests/api.py
https://requests.readthedocs.io/en/master/

gql 3, Release 3.0.0a4

The query can be a graphql query, mutation or subscription

The results are sent as an ExecutionResult object

1.7. Reference 23

gql 3, Release 3.0.0a4

24 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

25

gql 3, Release 3.0.0a4

26 Chapter 2. Indices and tables

PYTHON MODULE INDEX

g
gql, 17
gql.client, 18

27

gql 3, Release 3.0.0a4

28 Python Module Index

INDEX

Symbols
__init__() (gql.Client method), 17
__init__() (gql.client.AsyncClientSession method),

18
__init__() (gql.client.Client method), 19
__init__() (gql.client.SyncClientSession method), 20
__init__() (gql.transport.async_transport.AsyncTransport

method), 22
__init__() (gql.transport.local_schema.LocalSchemaTransport

method), 21
__init__() (gql.transport.requests.RequestsHTTPTransport

method), 21
__init__() (gql.transport.transport.Transport

method), 20

A
AsyncClientSession (class in gql.client), 18
AsyncTransport (class in

gql.transport.async_transport), 22

C
Client (class in gql), 17
Client (class in gql.client), 19
close() (gql.transport.async_transport.AsyncTransport

method), 22
close() (gql.transport.local_schema.LocalSchemaTransport

method), 21
close() (gql.transport.requests.RequestsHTTPTransport

method), 22
close() (gql.transport.transport.Transport method),

20
connect() (gql.transport.async_transport.AsyncTransport

method), 22
connect() (gql.transport.local_schema.LocalSchemaTransport

method), 21
connect() (gql.transport.requests.RequestsHTTPTransport

method), 22
connect() (gql.transport.transport.Transport

method), 20

E
execute() (gql.Client method), 18

execute() (gql.client.AsyncClientSession method), 18
execute() (gql.client.Client method), 19
execute() (gql.client.SyncClientSession method), 20
execute() (gql.transport.async_transport.AsyncTransport

method), 22
execute() (gql.transport.local_schema.LocalSchemaTransport

method), 21
execute() (gql.transport.requests.RequestsHTTPTransport

method), 22
execute() (gql.transport.transport.Transport

method), 20

F
fetch_and_validate()

(gql.client.AsyncClientSession method),
19

fetch_schema() (gql.client.AsyncClientSession
method), 19

fetch_schema() (gql.client.SyncClientSession
method), 20

G
gql

module, 17
gql() (in module gql), 18
gql.client

module, 18

L
LocalSchemaTransport (class in

gql.transport.local_schema), 21

M
module

gql, 17
gql.client, 18

R
RequestsHTTPTransport (class in

gql.transport.requests), 21

29

gql 3, Release 3.0.0a4

S
subscribe() (gql.Client method), 18
subscribe() (gql.client.AsyncClientSession method),

19
subscribe() (gql.client.Client method), 20
subscribe() (gql.transport.async_transport.AsyncTransport

method), 22
subscribe() (gql.transport.local_schema.LocalSchemaTransport

method), 21
SyncClientSession (class in gql.client), 20

T
Transport (class in gql.transport.transport), 20
transport() (gql.client.AsyncClientSession prop-

erty), 19
transport() (gql.client.SyncClientSession property),

20

30 Index

	Contents
	Introduction
	Usage
	Async vs Sync
	Transports
	Advanced
	gql-cli
	Reference

	Indices and tables
	Python Module Index
	Index

